江门西门子中国代理商触摸屏供应商
1)S7-200在扫描循环中完成一系列任务。任务循环执行一次称为一个扫描周期。S7-200的工作过程如图4所示。在一个扫描周期中,S7-200主要执行下列五个部分的操作:
(Ⅰ)读输入:S7-200从输入单元读取输入状态,并存入输入映像寄存器中。
(Ⅱ)执行程序:CPU根据这些输入信号控制相应逻辑,当程序执行时刷新相关数据。程序执行后,S7-200将程序逻辑写到输出映像寄存器中。
(Ⅲ)处理通讯请求:S7-200执行通讯处理。
(Ⅳ)执行CPU自诊断:S7-200检查固件、程序存储
器和扩展模块是否工作正常
(Ⅴ)写输出:在程序结束时,S7-200将数据从输出映像寄存器中写入把输出锁存器,后复制到物理输出点,驱动外部负载。
(2)、S7-200 CPU的工作模式
S7-200有两种操作模式:停止模式和运行模式。CPU面板上的LED状态灯可以显示当前的操作模式。
在停止模式下,S7--200不执行程序,您可以下载程序和CPU组态。在运行模式下,S7-200将运行程序。
S7-200提供一个方式开关来改变操作模式。您可以用方式开关(位于S7-200前盖下面)手动选择操作模式:当方式开关拨在停止模式,停止程序执行;当方式开关拨在运行模式,启动程序的执行;也可以将方式开关拨在TERM(终端)(暂态)模式,允许通过编程软件来切换CPU的工作模式,即停止模式或运行模式。
如果方式开关打在STOP或者TERM模式,且电源状态发生变化,则当电源恢复时,CPU会自动进入STOP模式。如果方式开关打在RUN模式,且电源状态发生变化,则当电源恢复时,CPU会进入RUN模式。
西门子PLC相比其他类型PLC有哪些优缺点?
优点:单片机廉,性可能会*强;
缺点:可靠性差、抗干扰性能差、通用性差、扩展能力比较弱、处理能力会弱于PLC(若做大系统复杂的交通灯;
可编程控制器是由现代化生产的需要而产生的,可编程序控制器的分,一般来说可以从三个度对可编程序控制器进行分类。其一是从可编程序控制器的控制规模大小去分类,其二是从可编程序控制器的性能高低去分类,其三是从可编程序控制器的结构特点去分类。
西门子比其它的PLC相比,指令采用功能块!*通俗易懂!在模拟量的输出和读取上要简单的多!只需使用传送命令就可以了,模拟量达寄存器在PLC中就相当于一个普通的数据寄存器D,在脉冲输出功能和可设置性*强大,*适合控制,通信能力*强大!扩展能力和适用性*强,更多的智能模块可以*广泛的应用于各种行业,例如称重等等
西门子即可以使用NPN的传感器也可以使用PNP的传感器!适用于改造旧设备,不管以前的设备使用的是何种传感器都能轻松的代替掉!
程序编写采用子程序编写方法!*主观*容易看懂,对于编程者的编写顺序,手自动程序的编写、某个立的部件编写等等都能清楚清晰的分开来!
驱动器故障引起跟随误差*差报警维修
故障现象:某配套SIEMENSPRIMOS系统、6RA26系列直流伺服驱动系统的数控滚齿机,开机后移动机床的Z轴,系统发生“ERR22跟随误差*差”报警。
分析与处理过程:数控机床发生跟随误差*过报警,其实质是实际机床不能到达指令的位置。引起这一故障的原因通常是伺服系统故障或机床机械传动系统的故障。
由于机床伺服进给系统为全闭环结构,无法通过脱开电动机与机械部分的连接进行试验。为了确认故障部位,维修时在机床断电、松开夹紧机构的情况下,手动转动Z轴丝杠,未发现机械传动系统的异常,初步判定故障是由伺服系统或数控装置不良引起的。
为了确定故障部位,维修时在系统接通的情况下,利用手轮少量移动Z轴(移动距离应控制在系统设定的大允许跟随误差以内,防止出现跟随误差报警),测量Z轴直流驱动器的速度给定电压,经检查发现速度给定有电压输入,其值大小与手轮移动的距离、方向有关。由此可以确认数控装置工作正常,故障是由于伺服驱动器的不良引起的。
检查驱动器发现,驱动器本身状态指示灯无报警,基本上可以排除驱动器主回路的故障。考虑到该机床X、Z轴驱动器型号相同,通过逐一交换驱动器的控制板确认故障部位在6RA26直流驱动器的A2板。
根据SIEMENS6RA26系列直流伺服驱动器的原理图,逐一检查、测量各级信号,后确认故障原因是由于A2板上的集成电压比较器N7(型号:LM348)不良引起的:更换后,机床恢复正常。
西门子plc模块不接地有没有问题
原理上应该要按要求接地,在实际使用中,因为我国大部分的使用现场不具备合格的接地系统。你所在的使用现场的接地系统肯定是不合格的,不但强弱电系统混合在一起,接地电阻也达不到要求。在这种场合下,模块不接地才能隔绝来自接地系统的干扰。我在使用PLC系统的过程中,s7-200的系统,严重的干扰甚至直接损坏模块。s7-300、400的系统,干扰甚至直接导致cpu停机。在没有合格的接地系统的情况下,要么单做个仪表地,要不干脆不接。长期的实践,不会出现你所担心的问题。特别是在模拟量的传输过程中所产生的干扰不能有效的屏蔽。
对于西门子S7来说(200除外),接地分为电气地和机壳地,这两个地是要分开的,不能接到一起。电气地就是模块的电源端子上,印有接地符号的端子;机壳地是柜体、S7-300导轨或S7-400的机架的金属部分,印有接地符号的地方,用螺钉连接黄绿线接地。这两个地是要分开接的。
电气室中,若地线连接可靠,模块的机壳地可以直接和柜体连在一起。电气地连接到三相五线制的地线上去。
若连接不可靠(比如临时放置),则不允许将模块的地和柜体连在一起。当然很多情况无法做到,因为在盘柜厂成套的时候,要事先将绝缘板安装到导轨与柜体的安装板之间,螺钉上也要穿橡皮套绝缘。将电气地和机壳地接到三相五线制的地线上去。
测试接地效果好坏,可以用漏电保护器做试验。如果接地不可靠,漏电流会从地线流出,漏电保护器动作。用普通断路器就不会动作。
6ES72111BE400XB0 | CPU 1211C AC/DC/Rly,6输入/4输出,集成2AI |
6ES72111AE400XB0 | CPU 1211C DC/DC/DC,6输入/4输出,集成2AI |
6ES72111HE400XB0 | CPU 1211C DC/DC/Rly,6输入/4输出,集成2AI |
6ES72121BE400XB0 | CPU 1212C AC/DC/Rly,8输入/6输出,集成2AI |
6ES72121AE400XB0 | CPU 1212C DC/DC/DC,8输入/6输出,集成2AI |
6ES72121HE400XB0 | CPU 1212C DC/DC/Rly,8输入/6输出,集成2AI |
6ES72141BG400XB0 | CPU 1214C AC/DC/Rly,14输入/10输出,集成2AI |
6ES72141AG400XB0 | CPU 1214C DC/DC/DC,14输入/10输出,集成2AI |
6ES72141HG400XB0 | CPU 1214C DC/DC/Rly,14输入/10输出,集成2AI |
6ES72151BG400XB0 | CPU 1215C AC/DC/Rly,14输入/10输出,集成2AI/2AO |
6ES72151AG400XB0 | CPU 1215C DC/DC/DC,14输入/10输出,集成2AI/2AO |
6ES72151HG400XB0 | CPU 1215C DC/DC/Rly,14输入/10输出,集成2AI/2AO |
6ES72171AG400XB0 | CPU 1217C DC/DC/DC,14输入/10输出,集成2AI/2AO |
6AV2123-2MB03-0AX0用途自动化
优点:单片机廉,性可能会*强;
缺点:可靠性差、抗干扰性能差、通用性差、扩展能力比较弱、处理能力会弱于PLC(若做大系统复杂的交通灯;
可编程控制器是由现代化生产的需要而产生的,可编程序控制器的分,一般来说可以从三个度对可编程序控制器进行分类。其一是从可编程序控制器的控制规模大小去分类,其二是从可编程序控制器的性能高低去分类,其三是从可编程序控制器的结构特点去分类。
西门子比其它的PLC相比,指令采用功能块!*通俗易懂!在模拟量的输出和读取上要简单的多!只需使用传送命令就可以了,模拟量达寄存器在PLC中就相当于一个普通的数据寄存器D,在脉冲输出功能和可设置性*强大,*适合控制,通信能力*强大!扩展能力和适用性*强,更多的智能模块可以*广泛的应用于各种行业,例如称重等等
西门子即可以使用NPN的传感器也可以使用PNP的传感器!适用于改造旧设备,不管以前的设备使用的是何种传感器都能轻松的代替掉!
程序编写采用子程序编写方法!*主观*容易看懂,对于编程者的编写顺序,手自动程序的编写、某个立的部件编写等等都能清楚清晰的分开来!
1.向高速度、大容量方向发展
为了提高PLC的处理能力,要求PLC具有*好的响应速度和*大的存储容量。目前,有的PLC的扫描速度可达0.1ms/k步左右。PLC的扫描速度已成为很重要的一个性能指标。
在存储容量方面,有的PLC*高可达几十兆字节。为了扩大存储容量,有的公司已使用了磁泡存储器或硬盘。
2.向*大型、*小型两个方向发展
当前中小型PLC比较多,为了适应市场的多种需要,今后PLC要向多品种方向发展,特别是向*大型和*小型两个方向发展。现已有I/O点数达14336点的*大型PLC,其使用32位微处理器,多CPU并行工作和大容量存储器,功能强。
小型PLC由整体结构向小型模块化结构发展,使配置*加灵活,为了市场需要已开发了各种简易、经济的*小型微型PLC,*小配置的I/O点数为8~16点,以适应单机及小型自动控制的需要,如三菱公司α系列PLC。
3.PLC大力开发智能模块,加强联网通信能力
为满足各种自动化控制系统的要求,近年来不断开发出许多功能模块,如高速计数模块、温度控制模块、远程I/O模块、通信和人机接口模块等。这些带CPU和存储器的智能I/O模块,既扩展了PLC功能,又使用灵活方便,扩大了PLC应用范围。
加强PLC联网通信的能力,是PLC技术进步的潮流。PLC的联网通信有两类:一类是PLC之间联网通信,各PLC生产厂家都有自己的专有联网手段;另一类是PLC与计算机之间的联网通信,一般PLC都有专用通信模块与计算机通信。为了加强联网通信能力,PLC生产厂家之间也在协商制订通用的通信标准,以构成*大的网络系统,PLC已成为集散控制系统(DCS)不可缺少的重要组成部分。
4.增强外部故障的检测与处理能力
根据统计资料表明:在PLC控制系统的故障中,CPU占5%,I/O接口占15%,输入设备占45%,输出设备占30%,线路占5%。**项共20%故障属于PLC的内部故障,它可通过PLC本身的软、硬件实现检测、处理;而其余80%的故障属于PLC的外部故障。PLC生产厂家都致力于研制、发展用于检测外部故障的专用智能模块,提高系统的可靠性。
5.编程语言多样化
在PLC系统结构不断发展的PLC的编程语言也越来越丰富,功能也不断提高。除了大多数PLC使用的梯形图语言外,为了适应各种控制要求,出现了面向顺序控制的步进编程语言、面向过程控制的流程图语言、与计算机兼容的**语言(BASIC、C语言等)等。多种编程语言的并存、互补与发展是PLC进步的一种趋势。
PLC执行程序的过程分为三个阶段,即输入采样阶段、程序执行阶段、输出刷新阶段
1.输入采样阶段
在输入采样阶段,PLC以扫描工作方式按顺序对所有输入端的输入状态进行采样,并存入输入映象寄存器中,此时输入映象寄存器被刷新。接着进入程序处理阶段,在程序执行阶段或其它阶段,输入状态发生变化,输入映象寄存器的内容也不会改变,输入状态的变化只有在下一个扫描周期的输入处理阶段才能被采样到。
2.程序执行阶段
在程序执行阶段,PLC对程序按顺序进行扫描执行。若程序用梯形图来表示,则总是按先上后下,先左后右的顺序进行。当遇到程序跳转指令时,则根据跳转条件是否满足来决定程序是否跳转。当指令中涉及到输入、输出状态时,PLC从输入映像寄存器和元件映象寄存器中读出,根据用户程序进行运算,运算的结果再存入元件映象寄存器中。对于元件映象寄存器来说,其内容会随程序执行的过程而变化。
3.输出刷新阶段
当所有程序执行完毕后,进入输出处理阶段。在这一阶段里,PLC将输出映象寄存器中与输出有关的状态(输出继电器状态)转存到输出锁存器中,并通过一定方式输出,驱动外部负载。
PLC在一个扫描周期内,对输入状态的采样只在输入采样阶段进行。当PLC进入程序执行阶段后输入端将被,直到下一个扫描周期的输入采样阶段才对输入状态进行重新采样。这方式称为集中采样,即在一个扫描周期内,集中一段时间对输入状态进行采样。
在用户程序中如果对输出多次赋值,则*后一次有效。在一个扫描周期内,只在输出刷新阶段才将输出状态从输出映象寄存器中输出,对输出接口进行刷新。在其它阶段里输出状态一直保存在输出映象寄存器中。这种方式称为集中输出。
对于小型PLC,其I/O点数较少,用户程序较短,一般采用集中采样、集中输出的工作方式,在一定程度上降低了系统的响应速度,但使PLC工作时大多数时间与外部输入/输出设备隔离,从根本上提高了系统的抗干扰能力,增强了系统的可靠性。
而对于大中型PLC,其I/O点数较多,控制功能强,用户程序较长,为提高系统响应速度,可以采用定期采样、定期输出方式,或中断输入、输出方式以及采用智能I/O接口等多种方式。
从上述分析可知,当PLC的输入端输入信号发生变化到PLC输出端对该输入变化作出反应,需要一段时间,这种现象称为PLC输入/输出响应滞后。对一般的工业控制,这种滞后是完全允许的。应该注意的是,这种响应滞后不仅是由于PLC扫描工作方式造成,*主要是PLC输入接口的滤波环节带来的输入延迟,以及输出接口中驱动器件的动作时间带来输出延迟,还与程序设计有关。滞后时间是设计PLC应用系统时应注意把握的一个参数。
江门西门子中国代理商触摸屏供应商